计算机视觉与图像处理,图像处理的优点介绍_仪器仪表_技术中心_机电之家资讯网

by admin on 2019年12月20日

图像处理就是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为。实质上是一段能够被计算机还原显示和输出为一幅图像的数字码。
21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。

 

学号:17101223364

图像处理的一个特点就是数据量大,而且在一些实时性要求很高的场合下,要求有很大的数据传输率,图像处理的这两大特点使得一些常规的软件不能满足要求,因此需要进行硬件图像处理。

图片 1

姓名:张海潮

在硬件图像处理中,目前主要采用专用集成电路、DSP、大规模可编程逻辑阵列为处理器。DSP数字信号处理器(Digital
signal
processor)的发展速度是非常快的,在高速图像处理系统中,越来越多的系统采用了DSP芯片,其原因在于DSP具有高速的信号处理能力以及处理方法的灵活性。用DSP芯片构成的图像处理系统具有以下一些优点:


转载自:

接口方便。DSP系统与其他以现代数字技术为基础的系统或设备都是兼容的,与这样的系统接口以实现某种功能要比模拟系统与这些系统接口容易得多。

 

【嵌牛导读】:

编程方便。DSP系统中的可编程芯片可使设计人员在开发过程中灵活方便地对软件进行修改和升级。

数字图像处理方法的重要性源于两个主要应用领域:

在作者的理解里,要实现计算机视觉必须有图像处理的帮助,而图像处理倚仗与模式识别的有效运用,而模式识别是人工智能领域的一个重要分支,人工智能与机器学习密不可分。纵观一切关系,发现计算机视觉的应用服务于机器学习。各个环节缺一不可,相辅相成。

稳定性好。DSP系统以数字信号处理为基础,受环境温度和噪声的影响小,可靠性高。

    • 改善图像信息以便解释。

    • 为存储、传输和表示而对图像数据进行处理,以便于机器自动理解。

【嵌牛鼻子】:计算机视觉 模式识别 机器学习 图像处理

精度高。可达到32位数字系统的精度。

图像处理(image processing):

【嵌牛提问】:计算机视觉与图像处理、模式识别、机器学习学科之间有什么关系?

可重复性好。模拟系统的性能受元器件参数变化比较大,而数字系统基本不受影响,因此数字系统便于测试、调试和大规模生产。

用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。图像处理技术一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。

【嵌牛正文】:

集成方便。DSP系统中的数字部件有高度的规范性,便于大规模集成。

常用方法:

计算机视觉(computer
vision),用计算机来模拟人的视觉机理获取和处理信息的能力。就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。

图像处理即用计算机对图像进行处理,其发展历史并不长。数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。首先数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。

    • 图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。

    • 图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

    • 图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。

    • 图像分割:图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。

    • 图像描述:图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。

图像处理(image
processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。基本内容图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。图像处理一般指数字图像处理。

另一方面,通过数字图像处理中的模式识别技术,可以将人眼无法识别的图像进行分类处理。通过计算机模式识别技术可以快速准确的检索、匹配和识别出各种东西。数字图像处理技术已经广泛深入地应用于国计民生休戚相关的各个领域。在计算机中,按照颜色和灰度的多少可以将图像分为二值图像、灰度图像、索引图像和真彩色RGB图像四种基本类型。大多数图像处理软件都支持这四种类型的图像。中国物联网校企联盟认为图像处理将会是物联网产业发展的重要支柱之一,它的具体应用是指纹识别技术。

模式识别(Pattern
Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised
Classification)和无监督的分类(Unsupervised
Classification)两种。模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。这些对象与数字形式的信息相区别,称为模式信息。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。

    • 图像分类(识别):图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

机器学习(Machine
Learning)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。机器学习在人工智能的研究中具有十分重要的地位。一个不具有学习能力的智能系统难以称得上是一个真正的智能系统,但是以往的智能系统都普遍缺少学习的能力。随着人工智能的深入发展,这些局限性表现得愈加突出。正是在这种情形下,机器学习逐渐成为人工智能研究的核心之一。它的应用已遍及人工智能的各个分支,如专家系统、自动推理、自然语言理解、模式识别、计算机视觉、智能机器人等领域。机器学习的研究是根据生理学、认知科学等对人类学习机理的了解,建立人类学习过程的计算模型或认识模型,发展各种学习理论和学习方法,研究通用的学习算法并进行理论上的分析,建立面向任务的具有特定应用的学习系统。这些研究目标相互影响相互促进。

 

人类研究计算机的目的,是为了提高社会生产力水平,提高生活质量,把人从单调复杂甚至危险的工作中解救出来。今天的计算机在计算速度上已经远远超过了人,然而在很多方面,特别是在人类智能活动有关的方面例如在视觉功能、听觉功能、嗅觉功能、自然语言理解能力功能等等方面,还不如人。


这种现状无法满足一些高级应用的要求。例如,我们希望计算机能够及早地发现路上的可疑情况并提醒汽车驾驶员以避免发生事故,我们更希望计算机能帮助我们进行自动驾驶,目前的技术还不足以满足诸如此类高级应用的要求,还需要更多的人工智能研究成果和系统实现的经验。

 

什么是人工智能呢?人工智能,是由人类设计并在计算机环境下实现的模拟或再现某些人智能行为的技术。一般认为,人类智能活动可以分为两类:感知行为与思维活动。模拟感知行为的人工智能研究的一些例子包括语音识别、话者识别等与人类的听觉功能有关的“计算机听觉”,物体三维表现的形状知识、距离、速度感知等与人类视觉有关的“计算机视觉”,等等。模拟思维活动的人工智能研究的例子包括符号推理、模糊推理、定理证明等与人类思维有关的“计算机思维”,等等。

图像分类:

从图像处理和模式识别发展起来的计算机视觉研究对象之一是如何利用二维投影图像恢复三维景物世界。计算机视觉使用的理论方法主要是基于几何、概率和运动学计算与三维重构的视觉计算理论,它的基础包括射影几何学、刚体运动力学、概率论与随机过程、图像处理、人工智能等理论。计算机视觉要达到的基本目的有以下几个:

在计算机中,按照颜色和灰度的多少可以将图像分为二值图像、灰度图像、索引图像和真彩色RGB图像四种基本类型。

(1) 根据一幅或多幅二维投影图像计算出观察点到目标物体的距离;

二值图像:

(2) 根据一幅或多幅二维投影图像计算出目标物体的运动参数;

一幅二值图像的二维矩阵仅由0、1两个值构成,“0”代表黑色,“1”代白色。由于每一像素(矩阵中每一元素)取值仅有0、1两种可能,所以计算机中二值图像的数据类型通常为1个二进制位。二值图像通常用于文字、线条图的扫描识别(OCR)和掩膜图像的存储。

(3) 根据一幅或多幅二维投影图像计算出目标物体的表面物理特性;

图片 2

(4) 根据多幅二维投影图像恢复出更大空间区域的投影图像。

二值图像

计算机视觉要达到的最终目的是实现利用计算机对于三维景物世界的理解,即实现人的视觉系统的某些功能。


在计算机视觉领域里,医学图像分析、光学文字识别对模式识别的要求需要提到一定高度。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。在计算机视觉的大多数实际应用当中,计算机被预设为解决特定的任务,然而基于机器学习的方法正日渐普及,一旦机器学习的研究进一步发展,未来“泛用型”的电脑视觉应用或许可以成真。

灰度图像:

人工智能所研究的一个主要问题是:如何让系统具备“计划”和“决策能力”?从而使之完成特定的技术动作(例如:移动一个机器人通过某种特定环境)。这一问题便与计算机视觉问题息息相关。在这里,计算机视觉系统作为一个感知器,为决策提供信息。另外一些研究方向包括模式识别和机器学习(这也隶属于人工智能领域,但与计算机视觉有着重要联系),也由此,计算机视觉时常被看作人工智能与计算机科学的一个分支。

灰度图像矩阵元素的取值范围通常为[0,255]。因此其数据类型一般为8位无符号整数的,这就是人们经常提到的256灰度图像。“0”表示纯黑色,“255”表示纯白色,中间的数字从小到大表示由黑到白的过渡色。二值图像可以看成是灰度图像的一个特例。

机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演译。

 

为了达到计算机视觉的目的,有两种技术途径可以考虑。第一种是仿生学方法,即从分析人类视觉的过程入手,利用大自然提供给我们的最好参考系——人类视觉系统,建立起视觉过程的计算模型,然后用计算机系统实现之。第二种是工程方法,即脱离人类视觉系统框框的约束,利用一切可行和实用的技术手段实现视觉功能。此方法的一般做法是,将人类视觉系统作为一个黑盒子对待,实现时只关心对于某种输入,视觉系统将给出何种输出。这两种方法理论上都是可以使用的,但面临的困难是,人类视觉系统对应某种输入的输出到底是什么,这是无法直接测得的。而且由于人的智能活动是一个多功能系统综合作用的结果,即使是得到了一个输入输出对,也很难肯定它是仅由当前的输入视觉刺激所产生的响应,而不是一个与历史状态综合作用的结果。

图片 3

不难理解,计算机视觉的研究具有双重意义。其一,是为了满足人工智能应用的需要,即用计算机实现人工的视觉系统的需要。这些成果可以安装在计算机和各种机器上,使计算机和机器人能够具有“看”的能力。其二,视觉计算模型的研究结果反过来对于我们进一步认识和研究人类视觉系统本身的机理,甚至人脑的机理,也同样具有相当大的参考意义。

 灰度图像 


索引图像:

索引图像的文件结构比较复杂,除了存放图像的二维矩阵外,还包括一个称之为颜色索引矩阵MAP的二维数组。是一种把像素值直接作为RGB调色板下标的图像。索引图像可把像素值“直接映射”为调色板数值。索引图像一般用于存放色彩要求比较简单的图像,如Windows中色彩构成比较简单的壁纸多采用索引图像存放,如果图像的色彩比较复杂,就要用到RGB真彩色图像。索引图像细节不在赘述。 

图片 4

索引图像


 RGB彩色图像:

RGB图像与索引图像一样都可以用来表示彩色图像。与索引图像一样,它分别用红(R)、绿(G)、蓝(B)三原色的组合来表示每个像素的颜色。但与索引图像不同的是,RGB图像每一个像素的颜色值(由RGB三原色表示)直接存放在图像矩阵中,由于每一像素的颜色需由R、G、B三个分量来表示,M、N分别表示图像的行列数,三个M
x N的二维矩阵分别表示各个像素的R、G、B三个颜色分量。 

图片 5


数字图像空间域处理:

空间域处理分为灰度变换和空间滤波。

灰度变换:

灰度变换是指根据某种目标条件按一定变换关系逐点改变源图像中每一个像素灰度值的方法。目的是为了改善画质,使图像的显示效果更加清晰。
图像的灰度变换处理是图像增强处理技术中的一种非常基础、直接的空间域图像处理方法。

变换函数法:

    • 图像反转

    • 对数变换

    • 幂律(伽马)变换

    • 分段线性变换 

图片 6

灰度变换函数曲线图

直方图处理法:

    • 直方图均衡

    • 直方图匹配

    • 局部直方图处理

    • 直方图统计

图片 7

matlab直方图均衡处理


空间滤波:

空间滤波,就是直接在灰度值上,做一些滤波操作。滤波一词,其实来源于频域,将某个频率成分滤除的意思。大部分线性的空间滤波器(比如均值滤波器),是在空间上进行一些灰度值上的操作,这个线性空间滤波器与频域滤波器有一一对应的关系(比如均值滤波器其本质就是低通滤波器)。

通常分为低通滤波(平滑化)、高通滤波(锐化)。

平滑滤波器:

在空间域上考虑,所指的平滑滤波器,有平均滤波与加权平均滤波两种形式。

图片 8

                                                                       
                     原始图像      
                                                         平均滤波

 

图片 9

加权平均滤波

统计排序滤波器:

统计排序滤波器的运用也广泛,其是很典型的非线性滤波器。主要包括了,最大值滤波器,最小值滤波器,中央值滤波器等等。这里作为代表的,主要说中央值滤波器,中央值滤波对于去除椒盐噪声特别有效。

所谓中央值滤波器,就是将滤波器范围内的像素的灰度值,进行排序,选出中央值作为这个像素的灰度值。同理可解释最大值滤波器与最小值滤波器。

图片 10原始图像  

图片 11

椒盐噪声

图片 12

中值滤波器

锐化滤波器:

所谓的锐化,即是将图像的细节强调出来。主要算子—-拉普拉斯算子。

图片 13

图像锐化

图像频率域滤波:

所谓的图像频率,就是这个图空间上的灰度变换的快慢。

为什么要在频率域中进行图像处理?

可以利用频率成分和图像外表之间的对应关系。一
些在空间域表述困难的增强任务,在频率域中变得非常普通 。

滤波在频率域更为直观,它可以解释空间域滤波的某些性质 。

可以在频率域指定滤波器,做反变换,然后在空间域使用结果滤波器作为空间域滤波器的指导。

主要变换为傅里叶变换。傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。

 

图片 14

时域与频域

频域滤波器分为:

    • 理想低通滤波器

    • 巴特沃斯低通滤波器

    • 高斯低通滤波器

    • 理想高通滤波器

    • 巴特沃斯高通滤波器

    • 高斯高通滤波器

    • 带阻滤波器

    • 带通滤波器

    • 陷波滤波器


其他图像处理相关:

图像处理与重建

彩色图像处理

小波和多分辨率处理

图像压缩

    霍夫曼编码

    Golomb编码

    算术编码

    块变换编码

    小波编码

    余弦变换

形态学图像处理

    腐蚀、膨胀

    边界提取

    空洞填充

    连通分量的提取

    细化与粗化

图像分割

    边缘检测

    阈值处理

    区域分割

目标识别 


FPGA技术:

一般地,图像处理大致可以分为低级处理和高级处理:低级处理的数据量大,算法简单,存在着较大的并行性;高级处理的算法复杂,数据量小。在图像处理的实现手段上,图像低级处理阶段,利用软件来实现是一个很耗时的过程,但是利用硬件实现,就可以对大量数据进行并行处理,能够极大的提高处理速度;而图像高级处理阶段,利用软件来实现则具有较高的性价比。因此,图像处理系统中可以利用高速硬件模块(如FPGA)承担图像低级处理任务。这样对大量图像数据进行了低级处理,使系统在减少数据传输量的同时还极大的提高了实时性能。

通用计算机:

通用计算机是基于冯.诺依曼结构的,通过高级语言(C,C++等)编写程序代码,整个执行过程是单指令单数据的串行处理过程,在很多情况下该系统结构上的局限性使它对低级图像的处理不能够满足高速处理的要求,它适合各种图像处理算法的验证,适用于一些实时性要求不高的场合。

并行处理机:

在许多场合下,单个CPU不能够实现实时数据处理的时候,采用多个CPU同时工作的并行处理为解决此问题提供了可能。各国学者在这方面作了大量的工作,并己经研究出多种并行结构和编程语言,它克服了单个处理器串行工作的局限性,提高了系统的性能。虽然对并行处理进行了大量的研究,但这个领域仍不成熟。处理单元负载不均衡,并行算法编程困难,理论上并行处理所应达到的性能和实际性能相比有较大差距。

专用集成电路:

专用集成电路是针对于某一固定算法或应用而专门设计的硬件芯片。许多图像处理算法采用通用处理器和DSP来实现难以满足速度需要,而必须采用ASIC来实现,在各种算法实现方案中使用ASIC来实现是最快的。但是,ASIC在实际应用中也有其缺点:ASIC从设计到应用需要较长的时间周期;ASIC因为属于专用硬件芯片,所以需求数量较少,成本也就非常高;由于ASIC是为专用目的设计的,当设计成型并且流片成功就不能改动,所以在设计中当算法因故需要改变时就要设计者重新设计芯片和硬件电路;当ASIC里存在硬件设计的错误时,并且在投入生产前未能发现的话,唯一解决的办法是把产品回收,而这样做的后果往往是芯片商付出沉重的经济代价。ASIC较低的灵活度往往使其局限于非常有限的应用中并容易产生性能瓶颈,因此由ASIC构建的图像处理系统,缺乏灵活性。

数字信号处理器:

数字信号处理器(DSP),是专门为快速实现各种数字信号处理算法而设计的、具有特殊结构的微处理器,通常使用C语言进行编程,其处理速度可达到2000MIPS,比最快的CPU还快10-50倍。数字信号处理器的内部采用专用硬件实现一些数字信号处理常用的运算,所以它进行这些运算速度非常快,如乘加(MAC)运算只需要一个时钟周期。但是从根本上来说,DSP只是对某些固定的运算提供硬件优化,其体系仍是串行指令执行系统,并且这些固定优化运算并不能够满足众多算法的需要,这使得它的使用受到限制。

现场可编程门阵列(FPGA):

FPGA器件是当今运用极为广泛的可编程逻辑器件,也被称为可编程ASIC。FPGA器件在结构上具有逻辑功能块排列,可编程的内部连线连接这些功能模块来实现一定的逻辑功能。FPGA器件的功能由逻辑结构的配置数据决定。工作时,这些配置数据存放在片内的SILAM中。使用SRAM的FPGA器件,在工作前需要从芯片外部加载配置数据,配置数据可以存储在片外的EPROM或其他存储体上,设计者可以控制加载过程,在现场修改器件的逻辑功能,即所谓现场编程。利用它用户不仅可以方便地设计出所需的硬件逻辑,而且可以进行静态重复编程和动态在系统重配置,使系统的硬件功能可以像软件一样编程来修改,从而可以实时地进行灵活而方便的更新和开发,大大提高了系统设计的灵活性和通用性。与此同时,FPGA自身也在迅速发展,其集成度、工作速度不断提高,包含的资源越来越丰富,可实现的功能也越来越强。


 

图片 15

FPGA与图像处理

 FPGA能在设计上实现硬件并行和流水线(pipeline)技术,而这些都不能在DSP上实现。因此,对于实时图像处理而言,与本质上仍然是依靠串行执行指令来完成相应图像处理算法的DSP系统相比,FPGA有很强的灵活性,可以根据需要进行重构配置,有较强的通用性,适于模块化设计;同时其开发周期短,系统易于维护和扩展,适合实时的信号处理,能够大大提高图像数据的处理速度,满足系统的实时性要求,因此采用FPGA器件是个不错的选择。


版权所有权归卿萃科技,转载请注明出处。

作者:卿萃科技ALIFPGA

原文地址:卿萃科技FPGA极客空间 微信公众号


 

图片 16

 扫描二维码关注卿萃科技FPGA极客空间


 

 

相关文章

发表评论

电子邮件地址不会被公开。 必填项已用*标注

网站地图xml地图