国内第一个高次谐波XUV激光超快反应动力学实验平台在兰州运行,西安光机所阿秒脉冲测量研究取得新进展

by admin on 2020年3月2日

国内第一个高次谐波XUV激光超快反应动力学实验平台在兰州运行,西安光机所阿秒脉冲测量研究取得新进展。近期,西安光机所瞬态光学与光子技术国家重点实验室阿秒研究团队取得重要进展,在攻克了一系列阿秒脉冲产生与测量关键技术基础上,在实验上获得了159as的孤立阿秒脉冲测量结果。  阿秒脉冲时域及相位分布  阿秒脉冲的产生机理来自超短超强激光与物质极端非线性作用中的高次谐波产生过程,高次谐波在时域表现为间距半个光周期的阿秒脉冲序列,而对很多应用来说,需要从阿秒脉冲序列中选择出单个或孤立阿秒脉冲,此外由于高次谐波的产生效率非常低(通常为10-6甚至更低),产生的阿秒脉冲能量非常低(一般为纳焦或亚纳焦级),传统的飞秒脉冲自相关测量技术难以直接应用。孤立阿秒脉冲的产生与测量已成为阿秒技术及应用中的核心关键技术。  为了实现高效孤立阿秒脉冲的产生,团队在实验中首先将中心波长750nm、载波包络相位稳定的少周期钛宝石飞秒脉冲聚焦到Ne气靶上激发出极紫外(XUV)波段的高次谐波,并采用双光学选通门方法整形飞秒脉冲驱动光电场形状,使得只有半个驱动光周期能够产生阿秒脉冲辐射,实现了孤立阿秒脉冲的选通。同时,为实现高转化效率的孤立阿秒脉冲产生,团队通过优化驱动光脉冲与惰性气体相互作用参数来实现相位匹配,并采用薄膜滤波技术用于毫焦量级的红外驱动光与纳焦量级的XUV阿秒脉冲的有效分离,同时实现了孤立阿秒脉冲的色散补偿。  此外,团队自主设计与研制了一套高能量分辨率阿秒条纹相机。阿秒条纹相机是目前孤立阿秒脉冲广泛的测量方法,其原理是首先XUV阿秒脉冲与惰性气体靶相互作用产生阿秒光电子,并在近红外光电场中得到调制,通过时间延迟扫描获得阿秒光电子谱图,并通过反演重构算法得到阿秒脉冲的光电场分布和脉冲宽度等信息,其核心技术是测量光电子动量的时间飞行谱仪的设计与研制。团队利用电子光学技术自主设计并研制成长度2m的时间飞行谱仪,该谱仪采取磁瓶式结构,解决了光电离后发散角大导致的光电子收集效率低的难题。另外,采用实时反馈的同步锁定技术实现了近红外泵浦光与XUV探测光脉冲之间高精度的同步和稳定。  基于以上关键技术攻关,利用获得的阿秒光电子条纹谱经反演重构算法得到了孤立阿秒脉冲的谱相位及脉宽信息,最终孤立阿秒脉冲宽度为159as,进一步优化色散补偿过程,可获得更窄的阿秒脉冲宽度。  该研究工作得到国家自然科学基金重大项目、中科院创新国际团队、中科院关键技术人才团队、西部青年学者等项目的资助,该工作也得到中科院光电研究院李捷博士的大力帮助!

12月5日,中国科学院近代物理研究所原子分子动力学实验团队成功实现了高次谐波产生的XUV激光与反应显微成像谱仪联合运行,并开展了光电离相关的实验研究,成为国内首家开展HHG-XUV光子与原子分子相互作用动力学实验研究的团队。

研究团队引进美国KMlab的激光系统,并利用高次谐波方法成功产生了单光子能量在eV范围的高性能阿秒XUV激光脉冲串。与此同时,研究团队自主研发了适用于XUV超快动力学实验的反应显微成像谱仪。该谱仪能够在超高靶室真空度条件下提供高密度超声气体靶,并完全测量光电离产生的荷电碎片,因此能够拍摄并研究由超短XUV脉冲诱导的原子、分子在阿秒时间尺度的动力学过程。这两种先进技术的结合使得实验团队能够利用XUV激光与原子分子作用,开展超快动力学研究。

该平台聚焦量子少体这一基本科学问题,为研究光与原子分子等物质的超快相互作用提供了重要手段,可从全微分角度对相关理论模型进行严格的实验检验。加速器产生的高电荷态离子和阿秒XUV激光与原子分子相互作用时间都在阿秒时间尺度,该平台的建成为研究超短电磁脉冲与物质相互作用奠定了坚实的基础;通过与重离子冷却储存环相结合,阿秒XUV脉冲激光在高电荷态离子谱学研究中将展现出巨大的科学价值。

He原子的单光子光电离实验图谱。左图:电子在XUV光子偏振方向上的偶极跃迁导致He+离子的位置谱;右图:XUV光子电离He原子的光电子在探测器上的投影。

相关文章

发表评论

电子邮件地址不会被公开。 必填项已用*标注

网站地图xml地图